VENVU 316 L

Flux-cored wire, high-alloyed, austenitic stainless

Classifications				
EN ISO 17633-A	EN ISO 17633-B	AWS A5.22		
T 19 12 3 L R M21/C1 3	TS 316L-F M21/C1 0	E316LT0-4/-1		

Characteristics and typical fields of application

Rutile flux-cored wire of T 19 12 3 L R / E316LT0 type for welding of stainless steels such as EN 1.4435 / 316L. Easy handling and high deposition rate result in high productivity with excellent welding performance and very low spatter formation. Increased travel speeds as well as self-releasing slag with little demand for cleaning and pickling provide considerable savings in time and money. The wire shows good wetting behavior and results in a finely rippled surface pattern. The wide arc ensures even penetration and side-wall fusion to prevent lack of fusion. Suitable for service temperatures from –120°C to 400°C. Resists intergranular corrosion up to 400°C.

VENVU 316 L Ø 0.9 mm is well suitable for welding of sheet metal from 1.5 mm and VENVU 316 Ø 1.2 mm can be used for a wall thickness \geq 3 mm. For welding in vertical-up and overhead positions, VENVU A 316 L should be preferred.

Base materials

EN 1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4409 GX2CrNiMo19-11-2, 1.4429 X2CrNiMoN17-12-3, 1.4432 X2CrNiMo17-12-3, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-12-3, 1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12

UNS S31600, S31603, S31635, S31640, S31653; AISI 316L, 316Ti, 316Cb

Typical analysis of all-weld metal (wt%)				Ferrite WRC-92		
С	Si	Mn	Cr	Ni	Мо	FN
0.03	0.7	1.5	19.0	12.0	2.7	3 - 10

Mechanical properties of all-weld metal – typical values (minimum values)

Condition	Yield strength R _{p0.2}	Tensile strength R _m	9	Impact work ISO-V KV J	
	MPa	MPa	%	20°C	-120°C
u	410 (≥ 320)	560 (≥ 510)	34 (≥ 30)	55	35 (≥ 32)

u: untreated, as welded – Ar + 18% CO₂

Operating data

▼ ♦ ♦ 1	Ø (mm)	Wire feed m/min	Arc length mm	Current A	Voltage V
←	1.2	5.0 – 15.0	~ 3	130 – 280	22 – 30
	1.6	4.5 – 9.5	~ 3	200 – 350	25 – 30

Welding with standard GMAW power source with DC+ polarity. No pulsing needed. Backhand (drag) technique preferred with a work angle of appr. 80°. Ar + 15 – 25% CO₂ as shielding gas offers the best weldability. 100% CO₂ can be also used, but the voltage should be increased by 2 V. The gas flow should be 15 – 18 l/min. The heat input should not exceed 2.0 kJ/mm, the interpass temperature be limited to max. 150°C and the wire stick-out 15 – 20 mm. The scaling temperature is approx. 850°C in air. Post-weld heat treatment generally not needed. In special cases, solution annealing can be performed at 1050°C followed by water quenching.

Approvals

TÜV (5349.), DB (43.014.15), DNV GL, LR (M21), CE